Canonical singular hermitian metrics on relative canonical bundles
نویسندگان
چکیده
منابع مشابه
Canonical singular hermitian metrics on relative canonical bundles
We introduce a new class of canonical AZD’s (called the supercanonical AZD’s) on the canonical bundles of smooth projective varieties with pseudoeffective canonical classes. We study the variation of the supercanonical AZD ĥcan under projective deformations and give a new proof of the invariance of plurigenera. This paper is a continuation of [Ts5]. MSC: 14J15,14J40, 32J18
متن کاملCanonical metrics on stable vector bundles
The problem of constructing moduli space of vector bundles over a projective manifold has attracted many mathematicians for decades. In mid 60’s Mumford first constructed the moduli space of vector bundles over algebraic curves via his celebrated GIT machinery. Later, in early 80’s Atiyah and Bott found an infinite dimensional symplectic quotient description of this moduli space. Since then, we...
متن کاملRicci-flat K Ahler Metrics on Canonical Bundles
We prove the existence of a (unique) S-invariant Ricci-flat Kähler metric on a neighbourhood of the zero section in the canonical bundle of a realanalytic Kähler manifold X, extending the metric on X. In the important paper [3], Calabi proved existence of Ricci-flat Kähler metrics on two classes of manifolds: a) cotangent bundles of projective spaces; b) canonical bundles of Kähler-Einstein man...
متن کاملBergman kernels and the pseudoeffectivity of relative canonical bundles
The main result of the present article is a (practically optimal) criterium for the pseudoeffectivity of the twisted relative canonical bundles of surjective projective maps. Our theorem has several applications in algebraic geometry; to start with, we obtain the natural analytic generalization of some semipositivity results due to E. Viehweg and F. Campana. As a byproduct, we give a simple and...
متن کاملCanonical coordinates and Bergman metrics
In this paper we will discuss local coordinates canonically corresponding to a Kähler metric. We will also discuss the C ∞ convergence of Bergman metrics following Tian's result on C 2 convergence of Bergman metrics. At the end we present an interesting characterization of ample line bundle that could be useful in arithmetic geometry.
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: American Journal of Mathematics
سال: 2011
ISSN: 1080-6377
DOI: 10.1353/ajm.2011.0047