Canonical singular hermitian metrics on relative canonical bundles

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Canonical singular hermitian metrics on relative canonical bundles

We introduce a new class of canonical AZD’s (called the supercanonical AZD’s) on the canonical bundles of smooth projective varieties with pseudoeffective canonical classes. We study the variation of the supercanonical AZD ĥcan under projective deformations and give a new proof of the invariance of plurigenera. This paper is a continuation of [Ts5]. MSC: 14J15,14J40, 32J18

متن کامل

Canonical metrics on stable vector bundles

The problem of constructing moduli space of vector bundles over a projective manifold has attracted many mathematicians for decades. In mid 60’s Mumford first constructed the moduli space of vector bundles over algebraic curves via his celebrated GIT machinery. Later, in early 80’s Atiyah and Bott found an infinite dimensional symplectic quotient description of this moduli space. Since then, we...

متن کامل

Ricci-flat K Ahler Metrics on Canonical Bundles

We prove the existence of a (unique) S-invariant Ricci-flat Kähler metric on a neighbourhood of the zero section in the canonical bundle of a realanalytic Kähler manifold X, extending the metric on X. In the important paper [3], Calabi proved existence of Ricci-flat Kähler metrics on two classes of manifolds: a) cotangent bundles of projective spaces; b) canonical bundles of Kähler-Einstein man...

متن کامل

Bergman kernels and the pseudoeffectivity of relative canonical bundles

The main result of the present article is a (practically optimal) criterium for the pseudoeffectivity of the twisted relative canonical bundles of surjective projective maps. Our theorem has several applications in algebraic geometry; to start with, we obtain the natural analytic generalization of some semipositivity results due to E. Viehweg and F. Campana. As a byproduct, we give a simple and...

متن کامل

Canonical coordinates and Bergman metrics

In this paper we will discuss local coordinates canonically corresponding to a Kähler metric. We will also discuss the C ∞ convergence of Bergman metrics following Tian's result on C 2 convergence of Bergman metrics. At the end we present an interesting characterization of ample line bundle that could be useful in arithmetic geometry.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: American Journal of Mathematics

سال: 2011

ISSN: 1080-6377

DOI: 10.1353/ajm.2011.0047